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An improved global-direction stencil based on the face-area-weighted
centroid for the gradient reconstruction of
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The accuracy of unstructured finite volume methods is greatly influenced by the gradient reconstruction, for which
the stencil selection plays a critical role. Compared with the commonly used face-neighbor and vertex-neighbor stencils,
the global-direction stencil is independent of the mesh topology, and characteristics of the flow field can be well reflected
by this novel stencil. However, for a high-aspect-ratio triangular grid, the grid skewness is evident, which is one of the
most important grid-quality measures known to affect the accuracy and stability of finite volume solvers. On this basis and
inspired by an approach of using face-area-weighted centroid to reduce the grid skewness, we explore a method by combin-
ing the global-direction stencil and face-area-weighted centroid on high-aspect-ratio triangular grids, so as to improve the
computational accuracy. Four representative numerical cases are simulated on high-aspect-ratio triangular grids to examine
the validity of the improved global-direction stencil. Results illustrate that errors of this improved methods are the lowest
among all methods we tested, and in high-mach-number flow, with the increase of cell aspect ratio, the improved global-
direction stencil always has a better stability than commonly used face-neighbor and vertex-neighbor stencils. Therefore,
the computational accuracy as well as stability is greatly improved, and superiorities of this novel method are verified.
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weighted centroid
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1. Introduction
Unstructured grids are commonly used in simulation of

computational fluid dynamics (CFD).[1] Compared with the
structured grid,[2] this kind of grids is easy to generate with-
out heavily manual intervention, and has a better adaptability
to different engineering shapes.[3–6] Therefore, compared with
the block-structured grid, utilizing unstructured grid brings a
lot of flexibilities.[7] Nowadays, the most widely used algo-
rithms for unstructured grids are second-order finite volume
methods (FVM)[8–10] adopted by many well-known software
packages, such as Ansys’s fluent (http://www.ansys.com) and
the open source software OpenFOAM (http://openfoam.org),
and the accuracy of these algorithms is greatly influenced by
the gradient reconstruction, for which the stencil selection
plays a critical role. One commonly used stencil selection
method selects cells that share faces with the central cell. For
this method, the stencil size equals the number of cell faces
and we name it as face-neighbor stencil. Sometimes, vertex-
adjacent cells that share vertices with the central cell are also
included to construct the stencil and we name it as vertex-
neighbor stencil. This method contains much more stencil
cells, while it is almost impossible to obtain a constant stencil
size.

Apart from the methods mentioned above, Xiong et al.[11]

proposed a stencil selection method in 2018 and named it as
the local-direction stencil selection method, where stencil cells
are augmented along two local directions. In this method,
characteristics of flow fields are taken into account during the
process of determining local directions, and one of them is
close to the boundary normal vector. However, when grid cells
have high aspect ratio, the cells selected by this method may
deviate a lot from the boundary normal. In addition, the imple-
mentation process of this method is very complicated. Com-
pared with the local-direction stencil selection method, the
global-direction stencil selection method is well performed.
In this method, instead of using different local directions, for
each cell, two global directions, that is, normal and tangen-
tial directions of the wall, are employed for all cells within
the computational domain. Stencil cells selected by this novel
global-direction stencil selection method are always along the
normal and tangential directions of the wall, even on high-
aspect-ratio triangular grids.

For some typical flows, global-direction stencil cells can
well reflect flow-field characteristics and capture the variation
of flow variables, such as the boundary-layer-type flow. How-
ever, after analysis, the only data required for the gradient
reconstruction are not stencil cells themselves, but flow vari-
ables evaluated at the reference point within grid cells. Usu-
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ally, the geometric centroid is chosen as the reference point.
Hence, although stencil cells selected by the global-direction
stencil selection method are along the normal and tangen-
tial directions of the wall, it is difficult to determine whether
the variation of the flow field can be accurately captured by
the reference points within stencil cells or not, especially for
high-aspect-ratio triangular grids, because this kind of grids
is highly anisotropic and easily skewed, that is, connections
of geometric centroids along the normal direction are obvi-
ously deflective. In this sense, the original motivation of cap-
turing the flow-field gradient by a global-direction stencil is
violated on cells with high aspect ratio. Therefore, in order
to achieve a better reflection of flow-field characteristics on
highly anisotropic grids, reducing grid skewness is one of the
feasible ways.

The grid skewness is one of the most important grid-
quality measures known to affect the stability and computa-
tional accuracy of CFD solvers.[5,12–17] There are various def-
initions of the grid skewness, such as the angle between face
normal and the vector pointing from the face centroid to the
cell centroid,[18] the minimal internal angle of grid cell,[19]

and the ratio of the max diagonal to the minimum.[15] Apart
from these definitions, there is a typical definition closely re-
lated to the finite volume discretization.[20] It is defined at a
face shared by two neighbor cells, say, A and B, as the dot
product of the unit vector pointing from the centroid of cell A
to that of cell B, and the unit face normal vector pointing from
cell A to B.[20] Thus a non-skewed grid has the measure 1 and
a highly-skewed grid nearly 0. From the definition, we can
clearly find if we want to reduce the grid skewness, we can
only redesign a grid without high aspect ratio to achieve the
skewness reduction. However, for some typical flows, such as
the boundary-layer-type flow, cells close to the wall are always
required to be set with high aspect ratio, due to the large nor-
mal gradient of flow variables. Therefore, highly anisotropic
grid cannot be avoided, and we can only rely on a new “cen-
troid” inside of the grid cell to replace the geometric centroid
for the skewness reduction.

Usually, unstructured finite volume methods (FVM) are
constructed based on the integral form, where solution and
source term vectors are treated as the cell-averaged val-
ues. However, for second-order finite volume methods, cell-
averaged values can be evaluated as the point value at the ge-
ometric centroid,[7–9] which is named as the reference point.
Using the geometric centroid brings a lot of advantages, for
example, the average value of solution and source term vec-
tors can be easily performed by one-point quadrature, which
is second-order accurate for linear functions.[21–23] In 2016
Sejekan et al.[24] proposed a new reference point named as
the containment center, which is defined as the center of the
smallest circle that can enclose a given triangle. The use of
this new reference point instead provides better stability, and

the designed order of accuracy is achieved. Apart from the in-
tegral form, in Ref. [20], Nishikawa illustrated that the same
finite volume methods can be constructed based on the differ-
ential form, where solution and source term vectors are not
cell-averaged values but point-values, which are evaluated at
the reference point. Furthermore, Nishikawa proved that the
finite volume method with differential form can also main-
tain the second-order accuracy without source term integra-
tion, and the reference point can be located anywhere within a
grid cell.[20] More importantly, this conclusion sets the stage
for the grid skewness reduction.

Given the freedom to choose the reference point, for a
simplex-element grid[25] (i.e., a triangular grid in two dimen-
sions), which is widely used in the simulation of boundary
layers, it can be easily skewed, especially on high-aspect-
ratio triangular grids. Nishikawa[20] proposed a new “cen-
troid” and named it as the face-area-weighted centroid. By
face-area-weighted formula, the connection of new reference
points is almost parallel to the boundary normal vector, and
the grid skewness is obviously reduced. On this basis, some
improvements are proposed in this paper, where the finite
volume method constructed by the differential form is em-
ployed, and solution as well as source term vectors are eval-
uated as point-values at the reference point. In addition, the
global-direction stencil cells are combined with the face-area-
weighted centroid[20] to obtain the skewness reduction on
high-aspect-ratio triangular cells and a more accurate reflec-
tion of the flow-field characteristics. Finally, four representa-
tive numerical cases will be utilized to examine the computa-
tional accuracy and stability of this improved global-direction
stencil, and we compare the results with stencils using the ge-
ometric centroid, including vertex-neighbor and face-neighbor
stencils, as well as the global-direction stencil.

The structure of this paper is organized as follows. In
Section 2, the governing equations with integral and differen-
tial forms, as well as spatial discretization, are described. The
improved global-direction stencil with the face-area-weighted
centroid are presented in Section 3. Moreover, two com-
monly used face-neighbor and vertex-neighbor stencil se-
lection methods, as well as the local-direction and global-
direction stencil selection methods are reviewed and analyzed
in this section. In Section 4, four numerical examples with
the straight or curved boundary are presented to preliminarily
verify the effectiveness of this improvement. Conclusions and
future work will be summarized in Section 5.

2. Unstructured finite volume methods
In this section, the discretization of second-order finite

volume methods from integral form is given firstly. For the
integral form, both solution and source term vectors are cell-
averaged values. Furthermore, the differential form of finite
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volume methods, where the solution and source term vec-
tors are treated as point-values at the reference point, is also
demonstrated.

2.1. Finite volume method from integral form

The integral governing equation for the inviscid problem
can be written as∫∫

V

∂𝑢

∂ t
dV +

∫∫
V

∇ ·𝐹 dV =
∫∫

V
𝑠dV , (1)

where 𝑢 is a solution vector, V is a control volume, and 𝑠 is
a source term vector. For the inviscid problem, 𝐹 denotes the
convective flux tensor with the form of

𝐹 =

 ρ𝑣

ρ𝑣⊗𝑣+p𝐼
ρ𝑣H

 , (2)

where ρ is the density, 𝑣 is the velocity vector, p is the pres-
sure, H is the specific total enthalpy,

H =
[
γP/(γ−1)+ρ𝑣2/2

]
/ρ, (3)

and ⊗ represents the dyadic product of two vectors. Equa-
tion (1) can be transformed by Gauss formula as∫∫

V

∂𝑢

∂ t
dV +

∮
∂V

𝐹n dS =
∫∫

V
𝑠dV , (4)

where ∂V denotes the boundary of control volume, 𝐹n is the
flux along the outward normal vector of cell faces. With the
second-order discretization, the semi-discrete scheme can be
formulated as

d�̄�i

dt
+

1
Vi

N f

∑
m=1

𝛷imSim =
1
Vi

∫∫
Vi

𝑠 dV , (5)

where �̄�i is the cell-averaged value of the solution vector,

�̄�i =
1
Vi

∫∫
Vi

𝑢i dV. (6)

For the second-order finite volume method, �̄� is always re-
placed by the point value that is evaluated at the cell centroid.
In addition, Nf is the number of cell faces, Sm is the face area,
and 𝛷im is the numerical flux computed at the face centroid.

i
j m

uR uL

Fig. 1. The process of cell-centered finite volume discretization on tri-
angular cells.

As shown in Fig. 1, to compute the numerical flux with
approximate Riemann solvers,[26] left and right state vectors
need to be calculated,{

𝑢n
L = �̄�i +∇𝑢i · (𝑥m−𝑥i),

𝑢n
R = �̄� j +∇𝑢 j · (𝑥m−𝑥 j),

(7)

where ∇𝑢i and ∇𝑢 j represent the solution gradients of cell
i and cell j, respectively; 𝑥m is face centroid; 𝑥i and 𝑥 j are
reference points of two cells. In this paper, the least square
(LSQR) method[27] will be employed for the gradient recon-
struction, and the process will be given in Section 2.3. More-
over, the Roe scheme[28] is utilized to compute the numerical
flux,

𝛷im =
1
2
[𝐹n(𝑢

n
L)+𝐹n(𝑢

n
R)]

− 1
2

∣∣�̄�(𝑢n
L,𝑢

n
R)
∣∣(𝑢n

L−𝑢n
R), (8)

where �̄�(𝑢n
L,𝑢

n
R) denotes the Jacobian coefficient matrix lin-

earized by the Roe average method.[28]

For the second-order finite volume method, source term
is always calculated by one-point quadrature at the reference
point. Hence, Eq. (5) can be written as

d�̄�i

dt
+

1
Vi

Nf

∑
m=1

𝛷imSim = 𝑠i, (9)

where 𝑠i is the source term vector evaluated at the reference
point. As mentioned above, the reference point is always cho-
sen at the geometric centroid. If it is chosen anywhere, the
final result will not be second-order accurate for linear func-
tion, unless the source term is a constant.

2.2. Finite volume method from differential form

Apart from the integral form mentioned in Section 2.1, in
this paper, the finite volume method with the differential form
is employed, and the governing equation is

d𝑢i

dt
+∇ ·𝐹 = 𝑠i. (10)

As Eq. (2) demonstrated, the flux is a linear function, and
therefore, the flux divergence can be transformed into

∇ ·𝐹 =
1
Vi

∫∫
Vi

∇ ·𝐹 dV =
∮

∂Vi

𝐹n dS. (11)

Hence, Eq. (10) can be written as

d𝑢i

dt
+

1
Vi

∮
∂Vi

𝐹n dS = 𝑠i, (12)

where flux integration can be solved by the numerical quadra-
ture,

d𝑢i

dt
+

1
Vi

Nf

∑
m=1

𝛷imSim = 𝑠i. (13)
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In Eq. (13), both 𝑢i and 𝑠i are treated as point-values and eval-
uated at the reference point, and numerical flux 𝛷im is also
constructed by the Roe scheme.[28] For differential finite vol-
ume methods, the reference point can be located anywhere
within the grid cell, and the second-order accuracy will always
be kept. On this basis, apart from the geometric centroid, a
better reference point that is beneficial to the numerical per-
formance of the FVM solver can be employed on stencil cells.

2.3. The least square gradient reconstruction

The evaluation of solution gradient by the least
square (LSQR) method was first introduced by Barth and
Jespersen.[27] The LSQR method is based on the Taylor ex-
pansion of variable uk at the reference point within the k-th
stencil cell. In order to get an optimal approximation, a least-
square-error function to reflect the sum of truncation errors
within stencil cells is computed for the central cell i,

Ei =
Ns

∑
k=1

{
ωk
[
uk−

(
ui +∇ui ·𝑟i,k +o(h)

)]2}
, (14)

where Ns is the number of stencil cells, uk is the exact value of
solution within the k-th stencil cell, and ui +∇ui ·𝑟i,k +o(h) is
the first-order-accurate Taylar series approximation for cell k
with o(h) being infinitely small, where 𝑟i,k denotes the vector
pointing from the reference point of cell i to that of cell k. In
order to reflect the influence degree of different stencil cells,
the weight ωk is defined as

ωk =
1∣∣𝑟i,k
∣∣ , (15)

which is set to emphasize the data geometrically close to
the central cell. For the two-dimensional unstructured grid,
Eq. (14) can be written as

Ei =
Ns

∑
k=1

{
ωk

[
∆uk,i−∆xi,k

(
∂u
∂x

)
i
−∆yi,k

(
∂u
∂y

)
i

]2
}
, (16)

where ∆uk,i = ui−uk, ∆xi,k = 𝑟i,k · 𝑖 and ∆yi,k = 𝑟i,k · 𝑗. In or-
der to derive the coefficients of different stencil cells, Eq. (16)
can be formulated as



∂Ei

∂

(
∂u
∂x

)
i

=
Ns

∑
k=1

2ωk∆xi,k

[
∆uk,i−∆xi,k

(
∂u
∂x

)
i
−∆yi,k

(
∂u
∂y

)
i

]
,

∂Ei

∂

(
∂u
∂y

)
i

=
Ns

∑
k=1

2ωk∆yi,k

[
∆uk,i−∆xi,k

(
∂u
∂x

)
i
−∆yi,k

(
∂u
∂y

)
i

]
.

(17)

This equation is utilized to get the minimum value of truncation errors. When truncation errors reach the minimum, we have two
derivatives ∂Ei/∂

(
∂u
∂x

)
i
= 0 and ∂Ei/∂

(
∂u
∂y

)
i
= 0, i.e., solution of the k-th stencil cell can be accurately reconstructed by that of

cell i with the second-order accuracy. Therefore, we only need to solve the equation shown as follows:
0 =

Ns

∑
k=1

[
2ωk∆xi,k∆uk,i−2ωk∆x2

i,k

(
∂u
∂x

)
i
−2ωk∆xi,k∆yi,k

(
∂u
∂y

)
i

]
,

0 =
Ns

∑
k=1

[
2ωk∆yi,k∆uk,i−2ωk∆yi,k∆xi,k

(
∂u
∂x

)
i
−2ωk∆y2

i,k

(
∂u
∂y

)
i

]
.

(18)

A linear system of equations can be constructed to solve Eq. (18),
Ns
∑

k=1
ωk∆x2

i,k

Ns
∑

k=1
ωk∆xi,k∆yi,k

Ns
∑

k=1
ωk∆yi,k∆xi,k

Ns
∑

k=1
ωk∆y2

i,k




∂u
∂x
∂u
∂y


i

=


Ns
∑

k=1
ωk∆xi,k∆ui,k

Ns
∑

k=1
ωk∆yi,k∆ui,k

 . (19)

Once the gradients of cell i are obtained, two state vectors can be computed as Eq. (7), and the numerical flux will be calculated. In
addition, as mentioned above, there is another important factor affecting the gradient reconstruction, that is, the stencil selection
method, and in the next section, we will focus on different stencils.

3. Stencil selection methods

In this section, the global-direction stencil selection
method and two commonly used face-neighbor and vertex-
neighbor stencil selection methods, as well as the local-
direction stencil selection method,[11] are reviewed and ana-

lyzed firstly. Then, the optimization of global-direction sten-

cil selection method for grids with the curved boundary is

performed. In adition, to achieve a better reflection of the

flow field, combination of the face-area-weighted centroid and

global-direction stencil will be given in Section 3.2.
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3.1. Review and analysis of commonly used and global-
direction stencil selection methods

Commonly used stencils are face-neighbor and vertex-
neighbor stencils. As shown in Fig. 2, the face-neighbor sten-
cil includes entire neighbor cells that share faces with the
central cell, and the vertex-neighbor stencil is constructed by
neighbor cells that share vertices with the central cell. Both
face-neighbor and vertex-neighbor stencils are dependent on
the fixed mesh topology. As a result, characteristics of the
flow field are not well reflected.

1 1
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2

2 2

2

22

3

3

3 3 3

3

3

1 1

1

1

1 1

1

11

2

1
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2

1

2

2

2

2

2

2 2
2

2

2

2 2 2(a) (b)

Fig. 2. Face-neighbor and vertex-neighbor stencil cells in different lay-
ers. The different numbers in these two figures represent the diverse
stencil layers (e.g., for vertex-neighbor stencil, the first layer stencil is
composed of all cells that share vertices with the central cell, and the
second layer stencil consists of cells that share vertices with the first
layer stencil). (a) Face-neighbor stencil. (b) Vertex-neighbor stencil.

boundary normal 

boundary normal 

stencil cells
grid

central cell
the first local direction

0.04

0.02

0

-0.02

-0.2 0.2 0.40
x

y
y

stencil cells
grid

central cell
the first local direction

1.2

1.0

0.8

0.4 0.6 0.8
x

(b)

(a)

Fig. 3. Local direction stencils on triangular grids with minor aspect
ratio. (a) Grid with straight boundary. (b) Grid with curved boundary.

Apart from two commonly used stencil selection meth-
ods, in 2018, Xiong et al.[11] put forward a stencil selection

method based on local directions, by which they imitated char-
acteristics of the structured grid and capture the variation of
flow field.

As shown in Fig. 3, all stencil cells are along two lo-
cal directions, demonstrating the structured characteristic, and
close to normal and tangential directions of the wall. For
some typical flows such as the boundary layer type flow, vari-
ables along the boundary normal direction are changed dra-
matically. Hence, this variation can be effectively captured by
local-direction stencil cells.

Usually, cells in a boundary layer are set with high as-
pect ratio to improve the resolution ratio. From Fig. 4, we can
easily find if the grid has high aspect ratio, one of the local
directions has severely deviated from the normal direction of
the wall, resulting in the poor reflection of the flow-field char-
acteristics. The implementation process of this method is very
complicated.

stencil cells
grid

central cell
the first local direction

boundary normal 

boundary normal 

stencil cells
grid

central cell
the first local direction

y
y

x

(b)

(a)

0.05

0

-0.1 0.1 0.20
x

1.1

1.0

1.0

0.9

0.9

0.8

0.8

0.7

0.70.6

Fig. 4. Local direction stencils on triangular grids with high aspect ra-
tio. (a) Grid with straight boundary. (b) Grid with curved boundary.

Compared with local-direction stencil, the global-
direction stencil selection method overcomes the problems
mentioned above, and has a better adaptability to high-aspect-
ratio triangular grids. For this method, two global directions
are determined firstly. One is along the normal direction of the
wall, and to achieve a better spatial ductility, the other one is
along the wall tangential. Then, for each central cell, two lines

100203-5



Chin. Phys. B Vol. 29, No. 10 (2020) 100203

that are parallel to global directions respectively and pass the
cell centroid are generated. Finally, cells in a given set, such
as the vertex-neighbor cells that intersect with these two lines,
are selected to construct the new stencil.

For simple-shape cases, two global directions can be eas-
ily determined. However, for problems with irregular or com-
plex surface, there is no analytic function to compute the nor-
mal vector of the wall. In this situation, we can refer to the
method of computing wall distance at the reference point to
obtain the normal vector.[29] On this basis, for problems with
complex surface, two global directions can also be obtained.

However, it should be noted that grid cells are not always
consistent with the flow anisotropy, especially in parallel com-
puting. In this situation, the stencil selection of the whole
computational domain could be divided into two parts. The
global-direction stencil selection method can be utilized for
cells adjacent to the wall surface, because flow anisotropy is
quite evident at this local field. Some commonly used stencil
selection methods, for example, the face-neighbor and vertex-
neighbor methods, could be employed on other fields.

y

0.08

0.06

0.04

0.02

0

-0.1
-0.02

0.1 0.20
x

y

1.1

1.0

0.9

0.8

0.7

boundary normal 

x
1.00.90.80.70.6

(b)

(a)
central cell
grid

vertex adjacent cells

global directions
global direction stencil cells

boundary normal 

central cell
grid

vertex adjacent cells

global directions
global direction stencil cells

Fig. 5. The global-direction stencils on triangular girds with high aspect
ratio. (a) Grid with straight boundary. (b) Grid with curved boundary.

On this basis, the implementation process is greatly sim-
plified, and flow anisotropy in the boundary layer can also
be well reflected by the corresponding global-direction sten-
cil cells.

As shown in Fig. 5, on high-aspect-ratio triangular grids
with straight and curved boundary, global-direction stencil
cells are always along normal and tangential directions of the
wall. Therefore, the flow anisotropy can be well reflected,
and the manipulation of this novel stencil selection method is
more concise and convenient, compared with that of the local-
direction stencil selection method.

However, some problems of this novel stencil selection
method are found later on grids with the curved boundary and
higher aspect ratio, that is, with the increase of cell aspect ra-
tio, wrong cells will be selected along the tangential direction
of the wall. After analysis, the reason is concluded. For this
kind of grids, there are too small spacing in the radial direction
and large spacing in the circumferential direction, and stencil
cells along the stream-wise direction are selected only by a
line parallel to the tangential direction of the wall, which will
definitely result in redundant or even insufficient cells to be
selected.

For internal cells, this phenomenon will lead to excess
cells to be selected, whereas for boundary-adjacent cells, the
number of selected stencil cells will not be enough to solve the
equations of gradient reconstruction.

y

0.2 0.40
x

y

1.5

1.4

1.3

1.2

1.1

1.0

boundary normal 

central cell
grid

vertex adjacent cells

global directions
global direction stencil cells

boundary normal 

central cell
grid

vertex adjacent cells

global directions

global direction stencil
cells

x
0.9

0.9

0.8

0.8

0.7

0.7

0.6

(b)

(a)

Fig. 6. Global-direction stencils at internal field and the curved bound-
ary on high-aspect-ratio triangular grids. (a) Internal field. (b) Curved
boundary.

As shown in Fig. 6(b), for this central cell, only one sten-
cil cell is selected, but for the second-order accurate gradi-
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ent reconstruction, as Eq. (19) demonstrated, there are two
unknowns need to be solved, and therefore, the optimization
need to be performed for the global-direction stencil selection
method on grids with the curved boundary and high aspect ra-
tio. Stencil cells along the normal direction of the wall can
be selected directly, but cells along the tangential direction of
the wall need to be adjusted to guarantee them are along the
stream-wise direction.

As shown in Fig. 7, after optimization, global-direction
stencil cells on grids with the curved boundary are always
along the wall normal and stream-wise directions no matter
how high aspect ratio of grid cells is. Hence, shortcomings
on grids with the curved boundary and high aspect ratio are
effectively eliminated.

central cell
grid

vertex adjacent cells
global direction stencil cells

central cell
grid

vertex adjacent cells
global direction stencil cells

boundary normal 

boundary normal 

x
0.90.80.70.6

y

1.0

0.9

0.8

0.7 (a)

x

0.90.80.70.6

(b)

y

1.0

0.9

0.8

0.7

Fig. 7. The optimized global-direction stencil cells on grids with the
curved boundary and high aspect ratio. (a) Grid 1. (b) Grid 2.

3.2. Improved global-direction stencil based on the face-
area-weighted centroid

In this section, the face-area-weighted centroid[20] is an-
alyzed firstly, and a typical high-aspect-ratio triangular grid is
utilized to analytically discuss the skewness reduction by the
employment of this novel reference point. The improvement
about the combination of global-direction stencil and face-
area-weighted centroid will also be demonstrated in detail.

3.2.1. Face-area-weighted centroid of triangular cell

For simplex-element grids,[25] the face-area-weighted
centroid is proposed in Ref. [20] to replace the geometric cen-
troid. As shown in Fig. 8(a), connection of the geometric cen-
troids exhibits the serrated characteristic. This phenomenon
is adverse to the accuracy and stability of the FVM solver.
However, as shown in Fig. 8(b), lines connecting the face-area-
weighted centroids are almost parallel to the normal direction
of the wall.

x

y

grid

the geometric centroid
the line connecting 
geometric centroid

grid
the face area weighted
centroid
the line connecting face
area weighted centroid

0.04
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0
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0

(a)

(b)

x

y

0.04

0.02

0

-0.02

-0.1 -0.1 -0.2

-0.04

0

Fig. 8. The geometric centroid and face-area-weighted centroid of tri-
angular cells. (a) Geometric centroid. (b) Face-area-weighted centroid.

Compared with the geometric centroid, use of face-area-
weighted centroid effectively reduces the grid skewness, and
the measure is demonstrated in Fig. 9.

grid
line connecting 
cell centroidsface normal

i

j

nij

j

j
i

i

common face 

^

eij^

nij^

eij^ nij^

eij^

Fig. 9. The grid skewness measure of cells in different aspect ratios.

In Fig. 9, the grid skewness measure is defined at a com-
mon face shared by two neighbor cells, say, i and j, where �̂�i j

is the unit vector along the connection of two cell centroids,
�̂�i j denotes the outward unit normal vector of this common
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face, and the measure of grid skewness is defined as the dot
product of two unit vectors, that is, the non-skewed grid with
�̂�i j · �̂�i j = 1 and highly skewed grid with �̂�i j · �̂�i j = 0.

From Fig. 9, we find that with the increase of cell aspect
ratio, the angle between two unit vectors �̂�i j and �̂�i j increases
at the same time, and therefore, the grid is gradually skewed.
For some typical flows, boundary-adjacent cells are often set
with high aspect ratio to capture the variation of flow vari-
ables. As a result, if the geometric centroid is still chosen
as the reference point, high grid skewness cannot be avoided.
In the following, the conclusion of grid skewness measure on
simplex-element grid[25] will be summarized.

For two-dimensional triangular grids, cell centroid can be
expressed by the arithmetic average of the face centroids (mid-
points in 2D)

(x j, y j) =
1
3

3

∑
k=1

(xmk, ymk), (20)

where (xmk, ymk) is coordinate of the k-th face centroid. The
face-area-weighted centroid[20] can be written as

(x j, y j) =

3
∑

k=1
Âp

jk(xmk, ymk)

3
∑

k=1
Âp

jk

,

Â jk =
A jk

max
k∈{1,2,3}

A jk
, (21)

where A jk represents the area (length) of common faces across
cell j and k, and p (> 0) is a parameter to control the degree
of grid skewness.

Consider a typical regular triangular grid as shown in
Fig. 10. Here R denotes the cell aspect ratio, and h is the
spacing in y-direction. As R→ ∞, the skewness measure ap-
proaches 1 at the vertical face, but can become arbitrarily small
for other faces: e.g., faces between cells 1 and 2, cells 2 and 3.

y

 






x

h

hR

Fig. 10. A typical high-aspect-ratio triangular grid in Cartesian-
coordinate system.

It is verified in Ref. [20] that with the increase of p, the
grid skewness will decrease dramatically on high-aspect-ratio
triangular grids. When p = 2, the measure of grid skewness
reaches 1 between cells 1 and 2, cells 2 and 3. Therefore, the
grid skewness can be totally eliminated by the employment of
face-area-weighted centroid in different p values.
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-0.05 0 0.05 0.10
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0

y

0.6 0.8 1.0
x
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Fig. 11. The geometric centroid and face-area-weighted centroid with
different parameter p on grids with straight and curved boundary respec-
tively. (a) Grid with straight boundary. (b) Grid with curved boundary.

As shown in Fig. 11, compared with the geometric cen-
troid, the grid skewness can be effectively reduced by the em-
ployment of face-area-weighted centroid. With the increase of
parameter p, connections of face-area-weighted centroid are
closer to the normal direction of the wall, regardless of the
grid with straight or curved boundary. This phenomenon just
coincides with our original motivation of designing the global-
direction stencil selection method. Inspired by that, we won-
der whether the face-area-weighted centroid can be used on
the global-direction stencil, to achieve a more accurate reflec-
tion of the flow-field characteristics.

3.2.2. The employment of face-area-weighted centroid
on global-direction stencil

As mentioned above, characteristics of the flow field can
be well reflected by global-direction stencil cells, and the ma-
nipulation of this novel stencil selection method is more con-
cise. Cells selected by the global-direction stencil selection
method are always along the normal direction of the wall and
stream-wise direction regardless of the grid with high aspect
ratio or not.

After analysis, though global-direction stencil cells are
along the normal and tangential directions of the wall, the
only data required for the gradient reconstruction are flow vari-
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ables evaluated at the reference point, rather than stencil cells
themselves. Therefore, the location of reference point within
the stencil cell is more decisive. As mentioned above, lines
connecting the geometric centroids are highly skewed, espe-
cially on high-aspect-ratio triangular grids, but the connection
of face-area-weighted centroids is almost parallel to the nor-
mal direction of the wall.

On this basis, in order to reduce the grid skewness and to
reflect flow field characteristics more accurately, we attempt
to improve the global-direction stencil by combining the face-
area-weighted centroid with globald-direction stencil cells.

grid

the geometric centroid

central cell
global direction stencil cells

the line connecting 
geometric centroid 

grid

the geometric centroid

central cell
global direction stencil cells

the line connecting face
area weighted centroid
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y
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x
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0.0004

0.0002

y

0.54 0.56 0.58 0.60
x

(b)

(a)

Fig. 12. The global-direction stencils combined with geometric cen-
troid and face-area-weighted centroid on regular triangular grid used
for the boundary layer type flow. (a) Geometric centroid. (b) Face-area-
weighted centroid.

As shown in Figs. 12 and 13, we can find that the line
connecting face-area-weighted centroids is closer to the nor-
mal direction of the wall than that of geometric centroids, no
matter whether they are on grids with the curved boundary
or not. As a result, the improved global-direction stencil has a
better reflection of the flow-field variation than original global-
direction stencil with the geometric centroid.
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x

(b)

(a)
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central cell
global direction stencil cells

the line connecting face
area weighted centroid
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global direction stencil cells

the line connecting 
geometric centroid 

y

x
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0.8

0.8

0.6
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Fig. 13. The global-direction stencils combined with geometric cen-
troid and face-area-weighted centroid on triangular grid with the curved
boundary. (a) Geometric centroid. (b) Face-area-weighted centroid.

4. Numerical examples
To verify the effectiveness of the improved global-

direction stencil, four representative numerical examples are
employed. In Sections 4.1 and 4.2, the method of manufac-
tured solutions (MMS)[30–33] is employed on Euler equations
to simulate boundary-layer type flow and verify the accuracy
for different stencil selection methods. In Section 4.3, su-
personic vortex flow is introduced to test the validity of this
improved global-direction stencil on grids with the curved
boundary. Finally, double mach reflection of strong shock
waves is simulated in Section 4.4 to further examine the nu-
merical performance of different methods on flow with high
mach number.

For comparison, these four numerical examples are sim-
ulated with five different stencils, including the improved
global-direction stencils with p = 1 and 2, and three sten-
cils with the geometric centroid including the commonly used
vertex-neighbor and face-neighbor stencils, as well as the
global-direction stencil. For the sake of simplifying the pre-
sentation in the following analysis, different stencils are ab-
breviated as listed in Table 1.
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Table 1. The abbreviation of different stencils.

Full name Abbreviation
Vertex-neighbor stencil V-stencil
Face-neighbor stencil F-stencil

Global-direction stencil with geometric centroid (i.e., p = 0) G-stencil (p = 0)
Global-direction stencil with the face-area-weighted centroid and p = 1 G-stencil (p = 1)
Global-direction stencil with the face-area-weighted centroid and p = 2 G-stencil (p = 2)

4.1. The case of Euler equations with the manufactured
solutions

In this section, to verify the second-order accuracy with
the point-value evaluation of solution and source term vectors,
the Euler equations are employed with the form of Eq. (12),
and the analytic solutions[20] are as follows:

ρ = 1.12+0.15sin [π (3.12x+1895.92y)] ,

u = 1.32+0.06sin [π (2.09x+2099.21y)] ,

v = 1.18+0.03sin [π (2.15x+2001.32y)] ,

p = 1.62+0.31sin [π (3.79x+1973.98y)] ,

(22)

and the flow fields of this numerical example is shown in
Fig. 14.
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Fig. 14. Flow fields of this numerical example. (a) Density. (b) Pressure.

The source term vector can be computed from the above
analytic solutions and their derivatives as

𝑠 =



∂ (ρu)
∂x

+
∂ (ρv)

∂y
∂
(
ρu2
)

∂x
+

∂ (ρuv)
∂y

+
∂ p
∂x

∂ (ρuv)
∂x

+
∂
(
ρv2
)

∂y
+

∂ p
∂y

∂ (ρuH)

∂x
+

∂ (ρvH)

∂y



=



u
∂ρ

∂x
+ρ

∂u
∂x

+ v
∂ρ

∂y
+ρ

∂v
∂y

2ρu
∂u
∂x

+u2 ∂ρ

∂x
+ρ

(
v

∂u
∂y

+u
∂v
∂y

)
+uv

∂ρ

∂y
+

∂ p
∂x

2ρv
∂v
∂y

+ v2 ∂ρ

∂y
+ρ

(
v

∂u
∂x

+u
∂v
∂x

)
+uv

∂ρ

∂x
+

∂ p
∂y

u
∂ (ρH)

∂x
+ρH

∂u
∂x

+ v
∂ (ρH)

∂y
+ρH

∂v
∂y


.

(23)

From Eq. (22), analytic solutions 𝑢(x,y) are obtained, and
the numerical solutions can be computed by the FVM solver.
Then, errors between analytic solutions and numerical solu-
tions are employed as the measure of convergence accuracy.
L2 and L∞ norms of solution errors are defined as

L2 =

√√√√∑
N
i=1

[(
si− sanaly

)2 ·Ai

]
∑

N
i=1 Ai

,

L∞ = max
∣∣si− sanaly

∣∣
i=1,N ,

(24)

where si is the numerical solution in cell i, sanaly is the analytic
solution, and Ai is the area of cell i. Three levels of grid aspect
ratios 102, 5×102 and 103 are tested. In each level, five sets of
regular grids in different size are generated by splitting quadri-
lateral grids with the right diagonals. Furthermore, the random
perturbation is introduced to regular triangular grids to gener-
ate the randomly perturbed triangular grids with topology and
the number of cells unchanged. Figure 15 displays regular
and randomly perturbed grids with AR = 103, and the distri-
bution of background quadrilateral grid cells from the coarsest
to finest are given in Table 2.
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Fig. 15. Regular and randomly perturbed triangular grids with AR =
103: (a) regular, (b) randomly perturbed.
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Table 2. The distribution of five sets of background quadrilateral grid
cells in different aspect ratios.

Grid name
Distribution in x and y directions (x,y ∈ [0, 1]× [0, 0.001])

AR = 102 AR = 5×102 AR = 103

vcoa 50×5 20×10 15×15

coa 100×10 40×20 30×30

med 150×15 60×30 45×45

fin 200×20 80×40 60×60

vfin 300×30 120×60 90×90

4.1.1. Computational results on regular triangular grids

(1) AR = 102

As shown in Fig. 16, for all of these five methods, the de-
signed order of accuracy is achieved. For both L2 and L∞ pres-
sure errors, G-stencil (p = 0) are always lower than that of V-
stencil and L-stencil. From Fig. 17, G-stencil (p = 0) requires
the fewest stencil cells. Hence, compared with two commonly
used stencils, using G-stencil (p = 0) brings a better numerical
performance on both computational accuracy and efficiency.
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Fig. 16. L2 and L∞ norms of pressure errors, when the aspect ratio
AR = 102: (a) L2 norm, (b) L∞ norm.

For the improved global-direction stencil, as shown
Fig. 18, when the parameter p is higher than zero, the grid
skewness is obviously reduced, and the connection of face-

area-weighted centroids is almost parallel to the normal direc-
tion of the wall. For the computational accuracy, from Fig. 16
and Table 3, we can find that errors of the improved global-
direction stencil, i.e., G-stencil (p = 1) and G-stencil (p = 2),
are significantly lower than those of G-stencil (p = 0) for both
L2 and L∞ pressure errors. Therefore, the computational accu-
racy is greatly improved by this novel method.

10.26

11.125 11.4156 11.5612 11.7072

7.908
8.452 8.63422 8.7255 8.81689

6.34 6.67 6.78 6.835 6.89

vcoa coa med fin vfin

V Stencil F Stencil G Stencil

Fig. 17. The stencil size of different stencil selection methods.
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Fig. 18. The geometric centroid and face-area-weighted centroid of grid
cells.

Table 3. Pressure errors of different stencils on the vfin grid.

Different stencils L2 norm of pressure errors L∞ norm of pressure errors

V-stencil 0.000517445 0.00192892

F-stencil 0.000470333 0.00166419

G-stencil (p = 0) 0.000446073 0.00146549

G-stencil (p = 1) 0.000237936 0.000923927

G-stencil (p = 2) 0.000234345 0.000917014

(2) AR = 103

The result of AR = 5×102 is similar to that of AR = 103.
Hence, in order to simplify the analysis, we only give the result
of AR = 103.

As shown in Fig. 19, with the increasing cell aspect ratio,
we can easily find from the results that, errors of the improved
global-direction stencil are obviously lower than those of three
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stencils with the geometric centroid for both L2 and L∞ errors.
Therefore, on high-aspect-ratio triangular grids, this improved
method also has a better numerical performance.
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Fig. 19. L2 and L∞ norms of pressure errors, when the aspect ratio
AR = 103: (a) L2 norm, (b) L∞ norm.

4.1.2. Computational results on randomly perturbed
triangular grids

Perturbed grids are introduced to this numerical example,
and three cases of the aspect ratio from 102 to 103 are tested.
Here, results of AR = 103 are given.

It can be seen from Fig. 20 that errors on the randomly
perturbed grid demonstrate the same trend to results on regu-
lar grids. For L2 norm, errors of G-stencil (p = 0) are close
to those of V-stencil and F-stencil, and for L∞ norm, errors of
G-stencil (p = 0) are always lower than those of V-stencil and
F-stencil.

As shown Fig. 22, when the parameter p is higher than
zero, the grid skewness is obviously reduced, and although
the grid is randomly perturbed, the connection of face-area-
weighted centroids is almost parallel to the normal direction
of the wall. For the computational accuracy, regardless of L2

or L∞ norm, errors of the improved global-direction stencil are
the lowest among all methods we tested. What’s more, from
Fig. 21, G-stencil requires the fewest stencil cells. Therefore,
both the computational accuracy and efficiency are improved,
and the effectiveness as well as the superiority of the improved
global-direction stencil are verified on this numerical example.
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Fig. 20. L2 and L∞ norms of pressure errors, when the aspect ratio
AR = 103: (a) L2 norm, (b) L∞ norm.
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Fig. 21. The stencil size of different stencil selection methods.

100203-12



Chin. Phys. B Vol. 29, No. 10 (2020) 100203

x
. . . . . .

y

.

0.0008

0.0010

.

.

grid

the geometric centroid
face area weighted
centroid (p=1)

centroid (p=2)
face area weighted

Fig. 22. The geometric centroid and face-area-weighted centroid of grid
cells.

4.2. The manufactured boundary layer type flow

In this section, the method of manufactured solutions is
also utilized for a scalar convective equation to simulate the
boundary-layer type flow, and the manufactured solution is
given as follows:

u(x,y) = 1− e
−(y−y0)√
cµ(x−x0) , (25)

with the parameter c = 0.59. The parameter µ controls the
thickness of the boundary layer. Flow fields corresponding to
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Fig. 23. The flow field of manufactured boundary layer type flow: (a)
µ = 10−6, (b) µ = 10−8.

different µ values are illustrated in Fig. 23. In the following
test, µ is set as 10−6.

The scalar convective equation can be written as

∂u
∂ t

+𝑎 ·∇u = 0. (26)

With the manufactured solution substituted into Eq. (26), the
modified equation with the source term can be formulated as
follows:

∂u
∂ t

+𝑎 ·∇u =
ay(y− y0)e

−(y−y0)√
cµ(x−x0)√

cµ(x− x0)

− ax(y− y0)e
−(y−y0)√
cµ(x−x0)

2
√

cµ(x− x0)
3

. (27)

Therefore, the manufactured solution represents the analytical
solution to the modified equation, and the numerical solution
ũ(x,y) can be obtained by the FVM solver. Then L2 and L∞

norms of errors between numerical and analytical solutions are
computed with different stencils.

Both regular and randomly perturbed triangular grids,
as shown in Fig. 24, are used in this example. Four levels
of grid stretching are tested, including wall cell aspect-ratios
(ARs) from 102 to 105. In each level, five anisotropic trian-
gular grids with different size are generated within the com-
putational domain(x,y ∈ [0.05,1.05]× [0,0.001]). During the
mesh generation process, a background regular quadrilateral
grid with N = (Nx +1)× (Ny +1) grid points and the horizon-
tal grid spacing hx = 1/Nx is stretched in the vertical direction
from y = 0. The y coordinates of the background grid points
are defined as

y j+1 = y j + ĥyβ
j+1∣∣

j=1,2,...,Ny
, (28)

where, ĥy = hx/AR is the minimal vertical grid spacing, and
β is a stretching factor, which can be calculated by the known
condition yNy = 10−3. The distribution of background quadri-
lateral grid cells from the coarsest to finest is shown in Table 4.
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Fig. 24. Regular and randomly perturbed triangular grids with AR =
104: (a) regular, (b) randomly perturbed.
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Table 4. The distribution of five sets of background quadrilateral grid
cells in different aspect ratios.

Grid name
Distribution in x and x directions (x,y ∈ [0, 1]× [0, 0.001])

AR = 102 AR = 103 AR = 104 AR = 105

vcoa 120×10 60×20 20×30 30×30
coa 180×15 90×30 30×45 45×45
med 240×20 120×40 40×60 60×60
fin 360×30 180×60 60×90 90×90

vfin 480×40 240×80 80×120 120×120

4.2.1. Computational results on regular triangular grids

(1) AR = 102

As shown in Fig. 25, for three stencils with the geomet-
ric centroid, we can easily find that both L2 and L∞ errors of
G-stencil (p = 0) are always lower than those of V-stencil and
F-stencil. From Fig. 26, we find that G-stencil requires the
least number of stencil cells among three different stencils.
Therefore, the global-direction stencil has great superiorities
on both computational accuracy and efficiency.
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Fig. 25. L2 and L∞ norms of solution errors, when the aspect ratio
AR = 102: (a) L2 norm, (b) L∞ norm.

From Fig. 27, we find when the face-area-weighted cen-
troid is employed, the grid skewness is obviously reduced.
Combined with the computational results shown in Fig. 25
and Table 5, for both L2 and L∞ norms, errors of the im-
proved global-direction stencil are obviously lower than those

of V-stencil and F-stencil as well as the unimproved global-
direction stencil, i.e., G-stencil (p = 0). As a result, the use
of the face-area-weighted centroid on global-direction stencil
cells greatly improves the computational accuracy.

V Stencil F Stencil G Stencil

11.1375 11.4241 11.5677 11.7116 11.7836

8.46 8.6396 8.7296 8.8196 8.8648

6.675 6.7833 6.8375 6.8917 6.9188

vcoa coa med fin vfin

Fig. 26. The stencil size of different stencil selection methods.
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Fig. 27. The geometric centroid and face-area-weighted centroid of grid
cells.

Table 5. Solution errors of different stencils on the vfin grid.

Different stencils L2 norm of solution errors L∞ norm of solution errors
V-stencil 0.000170044 0.00202639
F-stencil 0.00015098 0.00205056

G-stencil (p = 0) 0.00014244 0.00195697
G-stencil (p = 1) 0.0000746072 0.00140981
G-stencil (p = 2) 0.0000734274 0.00143022

(2) AR = 105

The results of AR = 103 and AR = 104 have the similar
trends to that of AR = 105, and for simplicity, only the case of
AR = 105 is given.

From Fig. 28, for V-stencil, F-stencil as well as G-stencil
(p = 0), with the increase of the cell aspect ratio, L∞ errors
do not attain the second-order accuracy on finer grids. How-
ever, if the face-area-weighted centroid is employed, both L2

and L∞ errors reach the second-order accuracy regardless of
the parameter p equaling to 1 or 2. In addition, errors of the
improved global-direction stencil are significantly lower than
those of three stencils with the geometric centroid. Hence, a
better computational accuracy is obtained.
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Fig. 28. L2 and L∞ norms of solution errors, when the aspect ratio AR = 105: (a) L2 norm, (b) L∞ norm.

4.2.2. Computational results on randomly perturbed triangular grids

Randomly perturbed grids are also employed in this numerical example, and the aspect ratio from 102 to 105 are tested.
Here, the results of AR = 104 are given.
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Fig. 29. L2 and L∞ norms of solution errors, with the aspect ratio AR = 104: (a) L2 norm, (b) L∞ norm.
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Fig. 30. The stencil size of different stencil selection methods.

From Fig. 29, we can find that the results also give trends
similar to that of a regular grid. Moreover, from Fig. 31,
although the grid is randomly perturbed, grid skewness is
evidently reduced by introducing the face-area-weighted
centroid, and combining the results shown in Fig. 29, er-

rors of the improved global-direction stencil are the low-
est among these five different stencils. As demonstrated by
Fig. 30, G-stencil requires the fewest stencil cells. Therefore,
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Fig. 31. The geometric centroid and face-area-weighted centroid of grid
cells.
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both computational accuracy and efficiency are greatly im-
proved, and the effectiveness as well as superiority of the im-
proved global-direction stencil are verified on this numerical
example.

4.3. Supersonic-vortex flow

In this section, the isentropic supersonic flow is simulated
and analytical solution is given. The computational domain is
two concentric circular arcs with radius ri = 1 and r0 = 1.384
located in the first quadrant. These two circular arcs represent
the inviscid wall boundary, and the flow at the inlet and the
outlet are supersonic. Flow fields of this numerical case are
shown in Fig. 32.

Ma
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ρ
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2.4
2.2
2.0
1.8
1.6
1.4
1.2

(a) (b)

Fig. 32. Flow fields of the supersonic vortex flow: (a) density, (b) mach
number.

The analytical solution of this example can be found in
Refs. [34,35] and is given as follows:

ρ = ρi

[
1+

γ−1
2

M2
i

(
1−
( ri

r

)2
)]1/(γ−1)

,

p =
ργ

γ
,

‖𝑣‖= ciMi

r
,

(29)

where the value of Mach number at the inner radius is Mi =

2.25 and the density ρi = 1. The sound speed is calculated by

ci =

√
γ

pi

ρi
= 1. (30)

In order to fully test the numerical performance of the
improved global-direction stencil, as shown in Fig. 33, regular
and randomly perturbed grids are employed. The grid gener-
ation method is identical to the case in Section 4.1. For this
numerical example, grids with three different aspect ratios are
designed, in each level, five sets of grids ranging in different
sizes are employed. Because the aspect ratios of grids with
the curved boundary are not a fixed value, the wall cell aspect
ratio is utilized. Three aspect ratios are approximately equal
to 2.5, 4, and 8, respectively, and distributions of background
quadrilateral grid cells in radial and circumferential directions
on different grids are listed in Table 6.
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Fig. 33. Regular and randomly perturbed triangular grids with AR≈ 4:
(a) regular, (b) randomly perturbed.

Table 6. The distribution of background quadrilateral grid cells in radial
and circumferential directions on three different grid categories.

Grid name
The distribution in radial and circumferential directions

AR≈ 2.5 AR≈ 4 AR≈ 8
vcoa 20×30 10×10 20×10
coa 30×45 20×20 40×20
med 40×60 40×40 80×40
fin 60×90 60×60 120×60
vfin 80×120 80×80 160×80

Here, L2 and L∞ norms of global and wall pressure er-
rors are employed as the measure of the convergence accuracy.
The global errors are calculated among all cells in the compu-
tational domain, while wall errors are calculated among cells
adjacent to the wall boundary.

4.3.1. Computational results on regular triangular grids

(1) AR≈ 2.5
As shown in Fig. 35, with the increase of parameter p,

the grid skewness is gradually reduced, and the connection
of face-area-weighted centroids is closer to the normal direc-
tion of the wall. Moreover, combined with the computational
results shown in Fig. 34 and Table 7, global pressure errors
of the improved global-direction stencil are the lowest among
five sencils. Therefore, the computational accuracy is greatly
improved for the internal fields.
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Fig. 34. L2 and L∞ norms of global pressure errors, and the aspect ratio
AR≈ 2.5: (a) L2 norm, (b) L∞ norm.

In order to examine the influence of the curved boundary,
wall pressure errors are considered for this numerical example.
Because the max value of pressure errors is located in bound-
ary cells, L∞ norm of wall pressure errors is equal to that of
global pressure errors. For simplicity, only L2 norm of wall
pressure errors is given.

From the results shown in Fig. 36, the L2 norm of wall
pressure errors obtained by G-stencil (p = 0) is lower than

those of V-stencil and F-stencil. Moreover, errors of the im-
proved global-direction stencil are lower than that of G-stencil
(p = 0). Therefore, the improved global-direction stencil has
a better performance not only at the internal field but also at
the curved boundary.
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Fig. 35. The geometric centroid and face-area-weighted centroid of grid
cells.
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Fig. 36. L2 norm of wall pressure errors and the aspect ratio AR≈ 2.5.

Table 7. Global pressure errors and average stencil size of different stencils on the vfin grid.

Different stencils
L2 norm of L∞ norm of

Average stencil size
global pressure errors global pressure errors

V-stencil 0.000109909 0.000631396 11.8339

F-stencil 0.000066257 0.000612726 8.896

G-stencil (p = 0) 0.0000541208 0.000457848 6.9375

G-stencil (p = 1) 0.0000454133 0.000366076 6.9375

G-stencil (p = 2) 0.0000427758 0.000331916 6.9375

(2) AR≈ 8
As shown in Figs. 37 and 39, with the increase of cell

aspect ratio, the results demonstrate the same trends as the
case of AR ≈ 2.5. From Fig. 38, it can be easily found that
with the increase of parameter p, the grid skewness is dramat-

ically reduced. For the computational results, both global and
wall pressure errors of the improved global-direction stencil
are the lowest among all methods we tested. Hence, on the
high-aspect-ratio triangular grid, this improved method is also
well performed.
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Fig. 37. L2 and L∞ norms of global pressure errors, and the aspect ratio AR≈ 8: (a) L2 norm, (b) L∞ norm.
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Fig. 38. The geometric centroid and face-area-weighted centroid of grid
cells and the aspect ratio AR≈ 8.
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Fig. 39. L2 norm of wall pressure errors and the aspect ratio AR≈ 8.

4.3.2. Computational results on randomly perturbed
triangular grids.

For randomly perturbed grids, the cases of aspect ratio
AR ≈ 2.5, 4 and 8 are tested, and the errors exhibit a similar
trend. For simplicity, here the results of AR≈ 4 are given.

It can be seen from Figs. 40–42 and Table 8 that, when
the grid is randomly perturbed, the G-stencil(p = 0) is supe-

rior to V-stecnil and F-stencil on both computational accuracy
and efficiency.

For the improved global-direction stencil, from Fig. 41,
we find that, although the grid is randomly perturbed, the grid
skewness can be effectively reduced by introducing the face-
area-weighted centroid. Combining the computational results
shown in Table 8, Figs. 40 and 42, we can find that both global
and wall pressure errors of the improved global-direction sten-
cil are the lowest among five different stencils.
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Fig. 40. L2 and L∞ norms of global pressure errors on randomly per-
turbed grids, and the aspect ratio AR≈ 4: (a) L2 norm, (b) L∞ norm.
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Fig. 41. The geometric centroid and face-area-weighted centroid of grid
cells, and the aspect ratio AR≈ 4.
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Fig. 42. L2 norm of wall pressure errors on randomly perturbed trian-
gular grids, and the aspect ratio AR≈ 4.

Table 8. Global pressure errors of different stencils on the randomly perturbed vfin grid.

Different stencils
L2 norm of L∞ norm of

Average stencil size
global pressure errors global pressure errors

V-stencil 0.000261469 0.00144312 11.8008

F-stencil 0.00017859 0.00141231 8.87531

G-stencil (p = 0) 0.000151624 0.00112674 6.925

G-stencil (p = 1) 0.000128455 0.00085544 6.925

G-stencil (p = 2) 0.00012346 0.000787497 6.925

To sum up, combining the computational results on grids with three different aspect ratios, we can fully explain the effective-
ness of the improved global-direction stencil. For this numerical example, variation of the flow field is along the radial direction.
Based on the global-direction stencil cells, once the face-area-weighted centroid is employed, connections of face-area-weighted
centroids are along the radial direction, and consistent with variation of the flow field. Furthermore, both computational accuracy
and efficiency of the improved global-direction stencil are always superior to the commonly used V-stencil and F-stencil, as well
as the unimproved global-direction stencil.

4.4. Double mach reflection of strong shock waves

From Section 4.1 to Section 4.3, it has been proved that with the employment of “face-area-weighted centroid” on global-
direction stencil cells, computational errors could be effectively reduced, and when parameter p is equal to 2, the minimum
values of both L2 and L∞ errors are achieved. In order to adequately test the numerical performance, such as stability of the
improved global-direction stencil on high-mach-number flows, in this section, the double mach reflection of strong shock waves
is employed.

This test case is governed by 2-D Euler equations in the domain x ∈ [0,4], y ∈ [0,1], with an Minf = 10 shock wave inclined
at 60◦ with respect to the x-axis, and propagating to the right. The initialization and imposition approach of different boundary
conditions could be found in Ref. [36], and are given as follows:

v0 (x,y) =


vA :=

[
8, 8.25cos

π

6
, −8.25sin

π

6
, 116.5

]T
, x 6

1
6
+

1
tanπ/3

,

vB = [1.4, 0, 0, 1]T, x >
1
6
+

1
tanπ/3

,

(31)

where vA is the state traveling behind the right-moving shock wave, and the corresponding boundary conditions could be imple-
mented as
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v−(x = 0, y, t) = vA, ∀t, y

∂xv−(x = 4, y, t) = 0, ∀t, y

v−(0 6 x 6 xswu (t) , y = 1, t) = vA, ∀t

v−(xswu (t)< x 6 4, y = 1, t) = vB, ∀t

v−

(
0 6 x 6

1
6
, y = 0, t

)
= vA, ∀t

∂yρ

∂yu

v

∂y p


(

1
6
< x 6 4, y = 0, t

)
=


0

0

0

0

 , ∀t

(32)

where xswu (t) is the practical location of right-moving shock
wave at upper boundary, and can be formulated as

xswu (t) =
1
6
+

1
tan(π/3)

+Sswxt,

Sswx =
10

sin(π/3)
.

(33)

Table 9. Cell aspect ratio and distribution of background quadrilateral
grids in x and y directions.

Different grids Distribution in x and y directions Aspect ratio (AR)
Grid 1 160×100 2.5
Grid 2 180×240 5.3
Grid 3 90×190 8.4
Grid 4 100×280 11.2

Four sets of triangular grids with different aspect ratios are
generated by splitting quadrilateral grids with right diagonals,
and the distributions as well as the corresponding aspect ratios
are listed in Table 9.

For simplicity, flow fields of V-stencil, F-stencil, G-
stencil (p = 0) and G-stencil (p = 2) at t = 0.2 on grids with
AR = 2.5, 5.3 and 11.2 are shown as follows: (1) AR = 2.5
(t = 0.2). (2) AR = 5.3 (t = 0.2).

From Figs. 43 and 44, we can easily find that, when the
grid is not highly anosotropic, stable numerical performances
are exhibited on all stencils we tested. However, with the
increasing cell aspect ratio, divergent computing caused by
instability first appears on face-neighbor stencil, while other
three stencils are well performed. On this basis, we continue
to increase the cell aspect ratio. As demonstrated in Fig. 45,
when AR equals 11.2, the same instability occurs on vertex-
neighbor stencil as well. Nevertheless, both unimproved and
improved global-direction stencils with p= 0 and p= 2 are al-
ways stable, and reflections of shock waves are well displayed.

As a result, in high-mach-number flow, the global-
direction stencil and its improvement have a more stable nu-
merical performance than commonly used vertex-neigbor and
face-neighbor stencils. What’s more, the effectiveness as well
as superiorities of the improved global-direction stencil are
verified.
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Fig. 43. Flow fields of four different stencils with AR = 2.5 and t = 0.2: (a) V-stencil, (b) F-stencil, (c) G-stencil (p = 0), (d) G-stencil (p = 2).
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Fig. 44. Flow fields of four different stencils with AR = 5.3 and t = 0.2, where “Diverged” in red represents the divergent computing. (a)
V-stencil. (b) F-stencil. (c) G-stencil (p = 0). (d) G-stencil (p = 2).
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Fig. 45. Flow fields of four different stencils with AR = 11.2 and t = 0.2, where “Diverged” in red represents the divergent computing. (a)
V-stencil. (b) F-stencil. (c) G-stencil (p = 0). (d) G-stencil (p = 2).

5. Conclusion and future work
In summary, we have realized that, although global di-

rection stencil cells are along the normal and tangential di-
rections of the wall, the only data required for the gradient re-
construction are flow variables evaluated at the reference point
rather than stencil cells themselves. Hence, it is hard to reply
whether the variation of flow field can be effectively captured
or not, especially for high-aspect-ratio triangular grids. If we
still choose the reference point at the geometric centroid, the
connection of reference points along the boundary normal di-
rection will be obviously skewed. Therefore, in order to obtain
a better reflection of the flow-field characteristics, the location
of reference point within stencil cells is more decisive.

Inspired by an approach to reduce the grid skewness,
where the face-area-weighted centroid[20] is utilized to replace
the geometric centroid, and with the increase of parameter p,
the grid skewness is gradually eliminated, and the line con-
necting face-area-weighted centroids are almost parallel to the
normal direction of the wall. On this basis, the global-direction
stencil is improved by the employment of face-area-weighted
centroid on high-aspect-ratio triangular grids, to realize the
grid skewness reduction and a more accurate reflection of the
flow-field characteristics. Since the position of the reference
point has been changed, the finite volume method from a dif-
ferential form is utilized.

For the computational results, the second-order accu-
racy with the point solution and the source term vectors in
evaluation have been demonstrated by three steady numeri-
cal examples, that is, errors of the improved global-direction
stencil are remarkably lower than those of vertex-neighbor
and face-neighbor stencils, as well as the unimproved global-
direction stencil in all steady numerical examples we tested.
In double mach reflection of strong shock waves, both unim-
proved and improved global-direction stencil are always sta-
ble, while vertex-neighbor and face-neighbor stencils bring
about the divergent computing on high-aspect-ratio triangu-
lar grids. What’s more, during the gradient reconstruction,
this novel stencil requires fewer stencil cells than two com-

monly used stencils. Therefore, both computational accuracy
and stability as well as efficiency are greatly improved, and the
superiority of this improvement is verified.

In future work, we will continue to extend the improved
global-direction stencil on high-order unstructured finite vol-
ume methods. Because the numerical cases utilized in this
study are boundary-layer-type and simple-shape flows, fur-
ther investigations of improved global-direction stencils for
parallel computing, as well as practical viscous and turbulent
flows with complex surface are essential to examine their ef-
fectiveness. In addition, to improve the generality of this novel
method and to simplify the implementation process, approach
of using different stencils at different local fields is also nec-
essary to test its feasibility.
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